
SSCalc
A Calculus for Solidity Smart Contracts

Diego Marmsoler1[0000−0003−2859−7673] and Billy Thornton1

University of Exeter, Exeter, UK
{d.marmsoler, b.thornton}@exeter.ac.uk

Abstract. Smart contracts are programs stored on the blockchain, often devel-
oped in a high-level programming language, the most popular of which is So-
lidity. Smart contracts are used to automate financial transactions and thus bugs
can lead to large financial losses. With this paper, we address this problem by de-
scribing a verification environment for Solidity in Isabelle/HOL. To this end, we
first describe a calculus to reason about Solidity smart contracts. The calculus is
formalized in Isabelle/HOL and its soundness is mechanically verified. Then, we
describe a Verification Condition Generator to automate the use of the calculus.
Our approach can be used to verify the functional correctness of Solidity smart
contracts. To demonstrate this, we use it to verify a simple token implemented
in Solidity. Our results show that the framework has the potential to significantly
reduce the verification effort compared to verifying directly from the semantics.

Keywords: Smart Contracts · Solidity · Program Verification · Isabelle/Solidity.

1 Introduction

Blockchain [33] is a novel technology for storing data in a decentralized manner, pro-
viding transparency, security, and trust. Although the technology was originally in-
vented to enable cryptocurrencies, it quickly found applications in several other do-
mains, such as finance [24], healthcare [5], land management [12], and even identity
management [43]. According to McKinsey, blockchain had a market capitalization of
more than $150B in 2018 [8] and Gartner predicts its business value to be $3.1T by
2030 [19].

One important innovation that comes with blockchains are so-called smart con-
tracts. These are digital contracts that are automatically executed once certain condi-
tions are met and that are used to automate transactions on the blockchain. For instance,
a payment for an item might be released instantly once the buyer and seller have met
all specified parameters for a deal. Every day, hundreds of thousands of new contracts
are deployed managing millions of dollars’ worth of transactions [42].

Technically, a smart contract is code that is deployed to a blockchain and that can
be executed by sending special transactions to it. Smart contracts are usually developed
in a high-level programming language, the most popular of which is Solidity [18]. So-
lidity is based on the Ethereum Virtual Machine (EVM) and thus it works on all EVM-
based smart contract platforms, such as Ethereum, Avalanche, Moonbeam, Polygon,

This version of the article has been accepted for publication in the proceedings of the 21st
International Conference on Software Engineering and Formal Methods (SEFM), after peer
review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record
and does not reflect post-acceptance improvements, or any corrections. The Version of Record
is available online.

https://doi.org/10.5281/zenodo.8172356
https://sefm-conference.github.io/2023/
https://sefm-conference.github.io/2023/

2 D. Marmsoler and B. Thornton

BSC, and more. As of today, 85% of all smart contracts are developed using Solid-
ity [25] and according to a 2019 survey, Solidity is by far the most popular language
used by blockchain developers (in fact it outranked the second most popular language
by 100%) [38].

As for every computer program, smart contracts may contain bugs that can be ex-
ploited. However, since smart contracts are often used to automate financial transac-
tions, such exploits may result in huge economic losses. For example, in 2016 a vulner-
ability in an Ethereum smart contract was exploited resulting in a loss of approximately
$60M [6]. More recently, hackers exploited a vulnerability in the DeFi-platform Poly
Network to steal $600M [34]. As another example, an incorrectly initialized contract
was the root cause of the Parity Wallet bug that froze $280M [36]. In general, it is
estimated that since 2019, more than $5B was stolen due to vulnerabilities in smart
contracts [13].

The high impact of vulnerabilities in smart contracts together with the fact that
once deployed to the blockchain, they cannot be updated or removed easily, makes it
important to “get them right” before they are deployed. As a result, there has been a
growing amount of work to verify smart contracts (see [2] for an overview). Most of
the existing work focuses on the automatic detection of certain types of vulnerabilities,
such as re-entrancy, integer overflow/underflow, or call-stack depth limit. However, they
do not allow for the verification of general functional correctness.

Thus, in the following paper, we present SSCalc, a framework for the verification
of the functional correctness of Solidity smart contracts. To this end, the contributions
of this paper are twofold. First, we describe a calculus to reason about Solidity smart
contracts. Our calculus extends traditional calculi, used to reason about sequential and
object-oriented programs [3], with new rules to capture the characteristics of smart
contracts. We formalized the calculus in Isabelle/HOL [35] and verified its soundness
mechanically from the formal semantics of Solidity developed in previous work [26].
Second, we developed a verification condition generator (VCG) to automate the use of
the calculus. The VCG is implemented in Isabelle/Eisbach [30] and consists of a set of
proof methods, which can be used to verify contract invariants and pre-/postconditions
for (internal) methods.

To evaluate our approach, we verified a basic implementation of a token [39] in
Solidity with and without using the calculus. Our results show that the calculus has the
potential to significantly reduce the effort required to verify a Solidity smart contract.
Without the calculus, verification required ca. 3250 lines of Isabelle/Isar code whereas
using the calculus reduced it to ca. 700 lines.

2 Background

Our calculus is based on the denotational semantics of a subset of Solidity described
in [26,27,28]. Our subset supports the following features of Solidity:

– Fixed-size integer types of various lengths with support for overflow and corre-
sponding arithmetic.

– Domain-specific primitives to transfer funds and query balances.
– Different types of stores, such as storage, memory, calldata, and stack.

SSCalc A Calculus for Solidity Smart Contracts 3

– Complex data types, such as hash-maps and arrays.
– Assignment with different semantics, depending on the location of the involved data

types (deep vs. shallow copy of complex data types).
– An abstract gas model that can be instantiated with concrete gas costs for each

statement.
– Internal and external method declarations and the ability to transfer funds with

external method calls.
– Declaration of fallback methods which are implicitly executed with monetary trans-

fers.

2.1 Inductive Data Types

Our semantics is formalized in higher-order logic using inductive data types [9]. To this
end, we use bold font for types and Roman font for type constructors.

For a datatype

nat def
= Zero() | Suc(nat)

we shall often use the case construct to match a variable against constructors:

dec(x) def
= case x of

{
Zero() ⇒ Zero()
Suc(n) ⇒ n

We shall also use
type⊥

def
= ⊥ ∪ {x⊥ | x ∈ type}

to denote the type that adds a distinct element ⊥ to the elements of type.

2.2 State Monad

Our semantics is defined using the concept of a state monad [14,40]. To this end we first
define a result type as follows:

result(n, e)
def
= N(n) | E(e)

The type result is defined over two type parameters, n, and e, which denote the type
for normal and erroneous return values, respectively.

We can then define a state monad as follows:

sm(a, e, s)
def
= s → result(a× s, e)

The monad requires three type parameters: type a for return values, type e for excep-
tions, and type s for states. Such a monad either updates state s and returns an element
of type a or returns an exception of type e.

4 D. Marmsoler and B. Thornton

2.3 State

In Solidity users and contracts are identified by addresses with associated balances.
Moreover, a contract operates over different types of stores: a stack and memory to keep
volatile data, as well as storage to keep persistent data. Finally, in Solidity computation
consumes so-called gas. Thus, a state is defined as follows:

state
def
= accounts× stack×memory × (address → storage)× nat

where accounts map addresses to balances and nat represents the available gas. Data
types stack, memory, and storage represent the different types of stores and map
locations to values (note also that each address has its private storage). In the following,
we use acc(st), sck(st), mem(st), sto(st), and gas(st) to access the account, stack,
memory, storage, and gas components of state st . Moreover, we shall use

stLgas := g, acc := a, sck := k,mem := m, sto := sM

to update the gas, account, stack, memory, and storage of state st to g, a, k, m, and s,
respectively.

2.4 Exceptions

In the following, we distinguish between two types of exceptions to signal erroneous
executions. Thus, we define the following type for exceptions:

error
def
= Gas() | Err()

An exception Gas occurs whenever a computation runs out of gas. All other erroneous
situations are captured by exception Err.

3 Calculus

In the following, we describe a weakest precondition calculus [17] to reason about So-
lidity. To this end, we fix the following four parameters:

– ep: A procedure environment assigning contracts to their addresses.
– ad: The address of the contract to be verified
– contract: The implementation of methods of the contract to be verified.
– fb: The implementation of the fallback method of the contract to be verified.

In addition, we assume that the procedure environment ep associates the address ad of
the contract to be verified with its implementation contract and fb:

ep(ad) = (contract, fb)⊥

We can then define the weakest precondition for our state monad as follows:

wp : sm((), error, state)× (state → b)× (error → b) → state → b

wp(f, P,E)
def
= λst . case f(st) of

{
N(_, st ′) ⇒ P (st ′)

E(e) ⇒ E(e)

SSCalc A Calculus for Solidity Smart Contracts 5

where () denotes the unit type (the type with only one element ()) and b is the boolean
type. It defines the weakest precondition of statement f , state predicate P , and excep-
tion predicate E. If f , executed in state st , terminates successfully with state st ′, the
weakest precondition equals P evaluated over st ′. On the other hand, if the statement
throws an exception e, the weakest precondition equals E evaluated over e.

A user usually prefers to specify correctness criteria using Hoare triples instead of
weakest preconditions. Thus, we further introduce the validity of a Hoare triple for a
statement. To this end, we first specify the notion of a state predicate and an exception
predicate:

spred
def
= accounts× stack×memory × (address → storage) → b

epred
def
= error → b

Now we can define validity as follows:

{_} _ {_}{_} : spred× sm((), error, state)× spred× epred → b

{P} f {Q}{E} def
= ∀st . P (acc(st), sck(st),mem(st), sto(st))

=⇒ case f(st) of

N(_, st ′) ⇒ gas(st ′) ≤ gas(st) ∧
Q(acc(st ′), sck(st ′),mem(st ′), sto(st ′))

E(e) ⇒ E(e)

A Hoare triple {P} f {Q}{E} is valid if for every state st that satisfies the state predi-
cate P , statement f either terminates in a state st ′ that satisfies state predicate Q or leads
to an error e that satisfies error predicate E. Note that we also require that execution
does not increase the amount of available gas.

To validate our definitions, we proved the following lemma about the relationship
between the validity of Hoare triples and weakest preconditions:

Lemma 1.

{P} f {Q}{E} ⇐⇒
∀s. P (acc(s), sck(s),mem(s), sto(s))

=⇒ wp(f, (λs. Q(acc(s), sck(s),mem(s), sto(s))), E, s)

3.1 Basic Rules

Our calculus includes rules for all the basic statements: WP_SKIP for the empty state-
ment, WP_ASSIGN for assignments, WP_COMP for compositions, WP_ITE for condi-
tionals, and WP_WHILE for while loops (which require the specification of an invari-
ant). These rules are mostly standard; and thus, they are not discussed further here.

There are, however, two particularities worth mentioning. First, each rule needs to
deal with the case that there might not be enough gas available to execute a statement.
Second, assignments are somewhat special in Solidity because the semantics of assign-
ments depend on the location of the expression on the left and right. Each side may
evaluate to a location on either stack, calldata, memory, or storage. Thus, when verify-
ing an assignment in Solidity, we must consider 16 different cases and two additional
error cases.

6 D. Marmsoler and B. Thornton

3.2 Method Invocation

In Solidity, a contract may have two types of methods. Internal methods can only be
called internally from within the same contract. External methods, on the other hand,
can only be called by other contracts. In addition, a Solidity contract has a designated
fallback method. This method is invoked whenever the contract receives some payments
or if a method is called that does not exist.

The following rule allows us to verify (recursive) method calls:

WP_EXTERNAL_INVOKE_TRANSFER

∀st ′. gas st ′ ≤ gas st =⇒ P (i, p, p′, pf , p
′
f , st

′) ⊢ Q(i, p, p′, pf , p
′
f , st)

P (i, p, p′, pf , p
′
f , st

′)

where predicates P and Q are defined below and A ⊢ C denotes that C is derivable
from A in our calculus.

The rule requires the specification of several parameters:

– i: An invariant for the contract’s private storage and balance.
– p, p′: Pre/postconditions for each internal method.
– pf , p

′
f : One pre/postcondition for the contract’s fallback method.

We can then use the rule to establish a predicate P for an arbitrary state st ′ by proving
Q for an arbitrary state st . While proving Q, the rule allows us to assume P for all
states st ′ with less (or equal) gas than st .

In the following, we are going to discuss predicates P and Q in more detail.

Predicate P. This predicate is defined as follows:

P (i, p, p′, pf , p
′
f , st)

def
= Pe(i, st) ∧ Pi(p, p

′, st) ∧ Pfi(pf , p
′
f , st) ∧ Pfe(i, st)

It establishes the weakest precondition for method calls and transfer statements.

Pe(iv , st). This predicate establishes the weakest precondition for external method
calls. In Solidity, external method calls can be used to invoke methods of other contracts
deployed to the blockchain. Moreover, it is possible to transfer funds from the caller to
the callee with each call. In the following, we use External(ad ′, i, xe, val) to denote
an external method call where

– ad ′ is an expression denoting the address of the called contract.
– i is the identifier of the method to be called.
– xe is a list containing actual parameters for the method.
– val is an expression denoting the amount of funds sent with the call.

Predicate Pe(iv , st) can now be defined as in Fig. 1, where address(ev) denotes
the address associated with an environment ev , expr(ex , ev , cd , st , g) evaluates an ex-
pression ex using an environment ev and calldata cd in a state st , ng is the updated gas
value gas(st)− costs(External(ad ′, i, xe, val), ev , cd , st), ⌈x⌉ converts a string to an
integer, and E denotes the exception predicate λe. e = Gas ∨ e = Err.

SSCalc A Calculus for Solidity Smart Contracts 7

∀ev , ad ′, i , xe, val , cd .

address(ev) = ad ∧ (1)(
∀adv , g, v, t, g′. adv ̸= ad ∧ adv ∈ dom(ep) ∧
expr(ad ′, ev , cd , stLgas := ngM, ng) = N((V(adv),V(TAddr)), g) ∧
expr(val , ev , cd , stLgas := gM, g) = N((V(v),V(t)), g′)

=⇒ iv(sto(st)(ad), ⌈acc(st)(ad)⌉ - ⌈v⌉)
)

(2)

=⇒ wp(stmt(External(ad ′, i, xe, val), ev , cd),

λst . iv(sto(st)(ad), ⌈acc(st)(ad)⌉),E, st) (3)

Fig. 1. Definition of Pe(iv , st).

Eq. 3 establishes the weakest precondition of invariant iv and error predicate E
for an external method call executed in state st . Eq. 1 ensures that the address of the
currently executing contract is indeed address ad of the contract to be verified (fixed
at the beginning of Sect. 3). Eq. 2 requires that the invariant holds before executing
the call. However, note that we require the invariant to hold on a modified version of
the balance. In particular, value v (which is obtained by evaluating expression val) is
deduced from the actual balance of the contract. This is because the actual call transfers
v funds from the caller to the callee. Thus, to ensure that the invariant holds after the
call, we must ensure that the invariant holds on a balance in which the value is already
deduced.

Pi(pre, post , st). This predicate establishes the weakest precondition for internal method
calls. In Solidity, internal method calls can only invoke internal methods of the currently
executing contract. In the following, we use Invoke(i, xe) to denote a call to an internal
method i with actual parameters xe . Pi(pre, post , st) can now be defined as in Fig. 2,

∀ev , i , xe, cd .
address(ev) = ad ∧ (4)(
∀fp, el, cd l, kl,ml, g.

load(False, fp, xe, nev, ∅, ∅,mem(st), ev , cd , stLgas := ngM, ng) =
N((el, cd l, kl,ml), g)

=⇒ pre(⌈acc(st)(ad)⌉ , sto(st)(ad), el, cd l, kl,ml)
)

(5)

=⇒ wp(stmt(Invoke(i, xe), ev , cd),

λst . post(i)(⌈acc(st)(ad)⌉ , sto(st)(ad)),E, st) (6)

Fig. 2. Definition of Pi(pre, post , st).

8 D. Marmsoler and B. Thornton

where load(cp, fp, xe,nev , cd ′, sck ′,mem ′, ev , cd , st) initializes formal parameters fp
with actual parameters xe , nev is a fresh environment for the execution of the method
body, and ng is the updated gas value gas(st)− costs(Invoke(i, xe), ev , cd , st).

Eq. 6 establishes the weakest precondition of the method’s postcondition post(i)
and error predicate E for an internal method call executed in state st . Again, Eq. 4
ensures that the currently executing contract is the one to be verified (with address
ad). Eq. 5, however, requires that the method’s precondition holds before the execution
of the call. Note that the precondition is a predicate over 6 parameters: the current
contracts balance and private store, as well as the environment created by loading the
actual parameters (environment el, calldata cd l, stack kl, and memory ml).

Pfe(iv , st). This predicate establishes the weakest precondition for external transfers.
In Solidity, transfer statements can be used to transfer funds from contracts to accounts.
In the following, we use Transfer(ad ′, ex) to denote a transfer statement in which

– ad ′ is an expression denoting the address of the receiver, and
– ex is an expression denoting the amount to be transferred.

Note that, if the receiving address belongs to a contract, a transfer implicitly triggers the
execution of a so-called fallback method. Thus, Pfe(iv , st) can be defined as in Fig. 3,
where ng is the updated gas value gas(st)− costs(Transfer(ad ′, ex), ev , cd , st).

∀ev , ex , ad ′, cd .

address(ev) = ad ∧ (7)(
∀adv , g. expr(ad ′, ev , cd , stLgas := ngM, ng) = N((V(adv),V(TAddr)), g)

=⇒ adv ̸= ad
)
∧ (8)(

∀adv , g, v, t, g′. adv ̸= ad ∧
expr(ad ′, ev , cd , stLgas := ngM, ng) = N((V(adv),V(TAddr)), g) ∧
expr(ex , ev , cd , stLgas := gM, g) = N((V(v),V(t)), g′)

=⇒ iv(sto(st)(ad), ⌈acc(st)(ad)⌉ - ⌈v⌉)
)

(9)

=⇒ wp(stmt(Transfer(ad ′, ex), ev , cd),

λst . iv(sto(st)(ad), ⌈acc(st)(ad)⌉),E, st) (10)

Fig. 3. Definition of Pfe(iv , st).

Eq. 10 establishes the weakest precondition of invariant iv and error predicate E
for a transfer statement executed in state st . Again, Eq. 7 ensures that the currently
executing contract is the one we want to verify (on address ad). In addition, Eq. 8
requires that the receiving contract is different from the executing contract (because
for self-transfers we have a different rule). Finally, Eq. 9 requires the invariant to hold
before the transfer statement is executed. Again, we require that the invariant holds

SSCalc A Calculus for Solidity Smart Contracts 9

on a balance in which the value is already deduced from the balance of the currently
executing contract.

Pfi(pref , postf , st). This predicate establishes the weakest precondition for internal
transfers. The rule is similar to Pfe, but since control is not passed on to an external
contract we may use pre-/post-conditions instead of an invariant. Thus, the definition of
Pfi is the same as that of Pfe (shown in Fig. 3) with the following changes:

– Eq. 8 is changed to adv = ad.
– In Eq. 9 iv(. . .) is replaced with pref (sto(st)(ad), ⌈acc(st)(ad)⌉).
– In Eq. 10 iv(. . .) is replaced with postf (sto(st)(ad), ⌈acc(st)(ad)⌉).

Note that we require pref to hold for the original balance acc(st)(ad) and not for the
modified version as in Eq. 9. This is because an internal transfer does not modify the
current contract’s balance, because the amount is first deduced from it but then added
again.

Predicate Q. This predicate is defined as follows:

Q(i, p, p′, pf , p
′
f , st)

def
= Qe(i, st) ∧Qi(p, p

′, st) ∧Qfi(pf , p
′
f , st) ∧Qfe(pf , p

′
f , st)

It denotes proof obligations for different types of methods.

Qe(iv , st). This predicate denotes proof obligations for external methods; that is, it
tells us what we need to verify to establish the weakest precondition of an invari-
ant for an external method. It is defined in Fig. 4 where ng is the updated gas value
gas(st ′)−costs(External(adex ,mid , xe, val), ev , cd , st ′), nev is a fresh environment
for the execution of the method body, and transfer(s, r, v, a) is used to transfer funds
of value v from sending address s to receiving address r for accounts a.

Eq. 15 shows the actual statement we need to verify, i.e., that the weakest precon-
dition of invariant iv and error predicate E for method body f holds in state st ′ with
gas g′′, accounts acc, stack kl, and memory ml. The statement needs to be verified only
for external methods invoked from a context outside the contract to be verified. Thus,
Eq. 11 requires that f is indeed the body of an external method mid of the contract to
be verified (contract) and Eq. 12 ensures that the method is invoked from outside (i.e.
an address different from the contract to be verified).

To verify Eq. 15 we can assume that the invariant holds for the state in which f will
be executed (Eq. 14). This is because we know that the invariant holds when control
leaves the current contract. Thus, if another contract is to call back into the current
contract the invariant must still hold. Note, however, that the invariant holds only on a
modified balance for contract ad. This is because the calling contract may send some
funds v with the method call which are then transferred to the receiving contract ad.
Thus, since we know that the invariant holds before transferring the funds, we need to
deduce v from the balance of ad after the transfer.

When verifying Eq. 15 we can also assume that the current level of gas is less than
or equal to the original amount of gas (Eq. 13). This is an important property because it
allows us to use all P predicates from WP_EXTERNAL_INVOKE_TRANSFER, which,
according to the rule, can only be assumed for states with less or equal gas than the
original state.

10 D. Marmsoler and B. Thornton

∀mid , fp, f, ev .

contract(mid) = Method(fp,True, f)⊥ ∧ (11)

address(ev) ̸= ad (12)

=⇒
(
∀adex , cd , st ′, xe, val , g, v, t, g′, el, cd l, kl,ml, g

′′, acc.

expr(adex , ev , cd , st ′Lgas := ngM, ng) = N((V(ad),V(TAddr)), g) ∧
expr(val , ev , cd , st ′Lgas := gM, g) = N((V(v),V(t)), g′) ∧
load(True, fp, xe, nev, ∅, ∅, ∅, ev , cd , st ′Lgas := g′M, g′) =

N((el, cd l, kl,ml), g
′′)

g′′ ≤ gas(st) ∧ (13)

transfer(address(ev), ad, v, acc(st ′Lgas := g′′M)) = acc⊥ ∧

iv(sto(st ′)(ad), ⌈acc(ad)⌉ - ⌈v⌉) (14)

=⇒ wp(stmt(f, el, cd l), λst . iv(sto(st)(ad), ⌈acc(st)(ad)⌉),E,
st ′Lgas := g′′, acc := acc, sck := kl,mem := mlM)

)
(15)

Fig. 4. Definition of Qe(iv , st).

Qi(pre, post , st). This predicate denotes proof obligations for internal methods, i.e.,
it tells us what we need to verify to establish the weakest precondition of a method’s
postcondition from its precondition. In Fig. 5 ng is the updated gas value gas(st ′) −
costs(Invoke(i, xe), ev , cd , st ′) and nev is a fresh environment for the execution of the
method body.

Eq. 20 states what we need to verify, i.e., that the weakest precondition of the post-
condition post(mid) associated with method mid and error predicate E for method
body f holds in state st ′ with gas g, stack kl, and memory ml. The statement needs
to be verified only for internal methods invoked from a context inside the contract to
be verified. Thus, Eq. 16 requires that f is indeed the body of an internal method mid
of the contract to be verified (contract) and Eq. 17 ensures that the method is invoked
from inside (i.e., from address ad).

Again, when verifying Eq. 20, we can assume that the available gas is less or equal
to the original amount of gas (Eq. 18). Moreover, we can also assume that the meth-
ods precondition holds for the environment in which method body f will be executed
(Eq. 19). The statement needs to be verified only for external methods invoked from a
context outside the contract to be verified. Thus, Eq. 11 requires that f is indeed the
body of an external method mid of the contract to be verified (contract) and Eq. 12
ensures that the method is invoked from outside (i.e., an address different from the
contract to be verified).

Qfe(iv , st). This predicate denotes proof obligations to establish the weakest precon-
dition of an invariant for fallback methods executed as a result of an external transfer.

SSCalc A Calculus for Solidity Smart Contracts 11

∀mid , fp, f, ev .

contract(mid) = Method(fp,False, f)⊥ ∧ (16)

address(ev) = ad (17)

=⇒
(
∀cd , st ′, i, xe, el, cd l, kl,ml, g.

load(False, fp, xe, nev, ∅, ∅,mem(st ′), ev , cd , st ′Lgas := ngM, ng) =
N((el, cd l, kl,ml), g) ∧

g ≤ gas(st) ∧ (18)

pre(mid)(
⌈
acc(st ′)(ad)

⌉
, sto(st ′)(ad), el, cd l, kl,ml) (19)

=⇒ wp(stmt(f, el, cd l), λst . post(mid)(⌈acc(st)(ad)⌉ , sto(st)(ad)),E,
st ′Lgas := g, sck := kl,mem := mlM)

)
(20)

Fig. 5. Definition of Qi(pre, post , st).

It is defined in Fig. 6 where ng is the updated gas value gas(st ′)− c and nev is a fresh
environment for the execution of the fallback method.

∀ev . address(ev) ̸= ad (21)

=⇒
(
∀ex , cd , st ′, adex , v, t, g, g′, acc, c.

expr(adex , ev , cd , st ′Lgas := ngM, ng) = N((V(ad),V(TAddr)), g) ∧
expr(ex , ev , cd , st ′Lgas := gM, g) = N((V(v),V(t)), g′) ∧
g′ ≤ gas(st) ∧ (22)

transfer(address(ev), ad, v, acc(st ′)) = acc⊥ ∧

iv(sto(st ′)(ad), ⌈acc(ad)⌉ - ⌈v⌉) (23)

=⇒ wp(stmt(fb,nev, ∅), λst . iv(sto(st)(ad), ⌈acc(st)(ad)⌉), E,

st ′Lgas := g′, sck := ∅, acc := acc,mem := ∅M)
)

(24)

Fig. 6. Definition of Qfe(iv , st).

Eq. 24 states what we need to verify, i.e., that the weakest precondition of the invari-
ant iv and error predicate E for our contracts fallback method fb holds in state st ′ with
gas g′, a fresh stack and memory, and account acc. Since it only needs to be verified for
external transfers, Eq. 21 ensures that the transfer statement is issued externally.

Again, when verifying Eq. 24, we can assume that the current level of gas is less
than or equal to the original level (Eq. 22). Moreover, we know that the invariant holds
when the transfer occurs. Thus, since the transfer adds v funds to the balance of contract
ad, we can assume that the invariant holds when we deduce v again.

12 D. Marmsoler and B. Thornton

Qfi(pref , postf , st). This predicate denotes proof obligations for internal transfers,
i.e., it tells us what we need to verify to establish the weakest precondition of the post-
condition of the fallback method from its precondition. Its definition is similar to that
of Qfe, with modifications similar to those required for Pfi above.

4 Formalization in Isabelle/HOL

The complete calculus is formalized in Isabelle/HOL, and its soundness is mechanically
verified1 from our semantics.

4.1 Verification of Soundness

The verification of soundness of our rules is mostly standard, except for rule
WP_EXTERNAL_INVOKE_TRANSFER. In particular, external method calls and trans-
fer statements transfer control to another contract. Thus, we must ensure that other con-
tracts can never change the validity of an invariant. To this end, we prove the following
lemma:

∀st ′. address(ev) ̸= ad ∧ (25)
iv(sto(st)(ad), ⌈acc(st)(ad)⌉) ∧ (26)
stmt(f, ev , cd , st) = N((), st ′) ∧ (27)
∀st ′. gas(st ′) < gas(st) =⇒ Qe(iv , st

′) ∧ (28)
∀st ′. gas(st ′) < gas(st) =⇒ Qfe(iv , st

′) (29)
=⇒ iv(sto(st ′)(ad), ⌈acc(st ′)(ad)⌉) (30)

With this lemma we verified that an invariant iv for the storage and balance of
contract ad is preserved (Eq. 26 and Eq. 30) by the execution of arbitrary statements f
(Eq. 27) executed in a different context from that of ad (Eq. 25), given that the external
methods (Eq. 28) and the fallback method (Eq. 29) of contract ad preserve the invariant.
Eq. 28 and Eq. 29 are particularly important here because f may contain statements that
call back to ad and thus execute code that may potentially impact iv .

Since our semantics is formalized as a deep embedding in Isabelle/HOL, the state-
ment above can be easily proven by structural induction on f .

4.2 Automation

To support users in applying the calculus for the verification of Solidity smart contracts
we implemented a verification condition generator (VCG). The VCG automates the use
of the calculus and leaves the user with a so-called verification condition that needs to
be discharged to ensure the correctness of the contract. The VCG is implemented in
Isabelle/Eisbach [30] and consists of different methods to support the verification of
different types of statements2.

1 Theory Weakest_Precondition.thy from the accompanying artefact [29].
2 Section “Verification Condition Generator” in Weakest_Precondition.thy [29].

SSCalc A Calculus for Solidity Smart Contracts 13

5 Methodology

In the following section, we demonstrate our approach using a simple example. To this
end, consider the contract depicted in Listing 1.1, which stores an unsigned integer
x (and possibly other variables not shown). Moreover, it provides an internal method
int1, which calls an external method ext() of a contract with address ad1 and sends
1 ether with it. It also provides another internal method int2, which calls int1. In
addition, it provides an external method ext, which transfers 1 ether to a contract with
address ad2 and another 1 ether to itself. Finally, it also has a fallback method which
does not have a name.

1 contract Example {
2 uint x;
3 ...
4 function int1(uint y, ...) internal {
5 ...
6 ad1.call.value(1 ether)(abi.encodeWithSignature("ext()"));
7 ...
8 }
9 function int2(int y,) internal {

10 ...
11 int1(5, ...);
12 ...
13 }
14 function ext() external {
15 ...
16 ad2.transfer(1 ether);
17 ...
18 address(this).transfer(1 ether);
19 ...
20 }
21 function () external payable {
22 ...
23 }
24 }

Listing 1.1. A simple example contract.

To verify the contract using our calculus, we first need to specify the following:

– An invariant: A predicate over the contract’s member variables (including, for ex-
ample, x) and the contract’s balance.

– Preconditions for internal methods int1 and int2: Predicates over the method’s
formal parameters (including, for example, y), the contract’s member variables (in-
cluding, for example, x), and the contract’s balance.

– Postconditions for internal methods int1 and int2: Predicates over the contract’s
member variables and the contract’s balance.

– A precondition and postcondition for the contract’s fallback method: A predicate
over the contract’s member variables and the contract’s balance.

We then need to verify the following:

14 D. Marmsoler and B. Thornton

– Executing the body of int1 (Ln. 5 - Ln. 7) in a state in which its precondition
holds, leads to a state in which its postcondition holds.

– Executing the body of int2 (Ln. 10 - Ln. 12) in a state in which its precondition
holds, leads to a state in which its postcondition holds.

– Executing the body of ext (Ln. 15 - Ln. 19) in a state in which the invariant holds,
leads to a state in which the invariant holds again.

– Executing the body of the fallback method (Ln. 22) in a state in which its precondi-
tion holds, leads to a state in which its postcondition holds, and executing the body
in a state in which the invariant holds, leads to a state in which the invariant holds
again.

To verify the above proof obligations we can use the rules of the calculus and the
following assumptions:

– If the invariant holds before executing Ln. 6, then it holds also after executing it.
– If the precondition associated with int1 holds before the execution of Ln. 11, then

the corresponding postcondition holds after executing Ln. 11.
– If the invariant holds before executing Ln. 16, then it holds also after executing it.
– If the fallback methods precondition holds before the execution of Ln. 18, then its

postcondition holds after executing Ln. 18.

6 Case Study: Verified Banking

In the following, we use our calculus to verify a contract that implements a simple
banking system.

6.1 The Contract

The contract should allow users to deposit funds and later withdraw them. A possible
implementation is provided by the contract shown in Listing 1.2.

1 contract Bank {
2 mapping(address => uint256) balances;
3
4 function deposit() external payable {
5 balances[msg.sender] = balances[msg.sender] + msg.value;
6 }
7
8 function withdraw() external {
9 uint256 bal = balances[msg.sender];

10 balances[msg.sender] = 0;
11 msg.sender.transfer(bal);
12 }
13 }

Listing 1.2. A simple banking contract.

SSCalc A Calculus for Solidity Smart Contracts 15

The contract has one member variable balances to keep track of all the balances.
Moreover, it provides two methods to deposit and withdraw funds. When a contract
calls deposit with some funds, the funds are transferred to the Bank contract and the
amount is kept in msg.value. Thus, method deposit simply adds the value to the
balance of the calling contract to keep track of how much each contract contributed to
the funds of the banking contract. A contract can call withdraw to get its funds back.
To this end, the banking contract first sets the caller’s internal balance to 0 (Ln. 10) and
then returns the corresponding funds (Ln. 11). Note that it is important to first update
the internal balance before transferring the money. Thus, the contract is secure against
so-called re-entrancy attacks [4]. However, the question remains whether the contract
is indeed functionally correct or if it is exposed to other vulnerabilities.

6.2 Formalizing the Contract

To answer this question, we first need to formalize the contract in our semantics. To this
end, we need to provide definitions for the parameters of our calculus described at the
beginning of Sect. 3:

contract =

“balances” 7→ Var(STMap(TAddr,STValue(TUInt(256))))

“deposit” 7→ Method([],True,deposit)

“withdraw” 7→ Method([],True,withdraw)

fb = Skip

The contract is formalized as a mapping from identifiers to corresponding members.
While “balances” refers to a variable, “deposit” and “withdraw” refer to external
methods with body deposit and withdraw defined as in Listing 1.2. The contract does
not define a fallback method; thus fb is defined as Skip.

6.3 Specification of Properties

The property we want to verify for our contract is that the relationship between the sum
of all stored balances and the internal balance of the contract is preserved through the
execution of each external method.

Thus, we first formalize the following invariant:

iv(bal , s, a)
def
= a− sum(s) ≥ bal ∧ bal ≥ 0 ∧ pos(s)

sum(s)
def
=

∑
{(ad,x) | s(ad+“.”+“balances”)=x⊥}

⌈x⌉

pos(s)
def
= ∀ad , x. s(ad + “.” + “balances”) = x⊥ =⇒ ⌈x⌉ ≥ 0

The important part here is the first conjunction in the definition of iv: a−sum(s) ≥ bal .
Here, a represents the funds available to our banking contract and sum(s) represents
the sum of all its stored balances. Thus, the formula requires that the difference between
these two balances is bound by a certain value bal .

16 D. Marmsoler and B. Thornton

Now, we can formalize the properties thst we want to verify using the Hoare triple
notation introduced in Sect. 3:

{I} stmt(External(Address(ad), “deposit”, [], val), env , cd) {I}{E}
{I} stmt(External(Address(ad), “withdraw”, [], val), env , cd) {I}{E}

where I((a, _, _, s)) def
= iv(bal , s(ad), ⌈a(ad)⌉), E(e)

def
= e = Gas∨e = Err, and

address(env) ̸= ad.

6.4 Verification

As discussed in Sect. 3.2, Solidity implicitly triggers the execution of a so-called fall-
back method whenever money is transferred to a contract. In particular, if another con-
tract calls withdraw, the transfer statement in Ln. 11 of Listing 1.2 triggers the exe-
cution of the callee’s fallback method. Thus, as we do not know all potential contracts
that call withdraw, we need to verify the invariant for all possible implementations.

To evaluate our approach, we verified the above property twice: from its seman-
tics without using the calculus [28], and using our calculus [29]. Without the calculus,
verifying the above property required ca. 3 250 lines of Isabelle/Isar code. Using the
calculus reduced it to ca. 700 lines.

7 Related Work

Since Solidity is the most popular language for developing smart contracts there has
been growing interest in formalizing its semantics. Bhargavan et al. [10], for exam-
ple, provide a semantics of Solidity in F*. Crosara et al. [16] describe an operational
semantics for a subset of Solidity. Hajdu and Jovanovic [21], provide a formalization
of Solidity in terms of a simple SMT-based intermediate language. In addition, Za-
krzewski [44] describes a big-step semantics of a small subset of Solidity and Yang and
Lei [41] describe a formalization of a subset of Solidity in Coq [37]. Moreover, Jiao et
al. [22,23], provide a formalization of Solidity in K. Finally, Cassez et al. [11] provide
an implementation of Solidity in Dafny. All of these works provide important contribu-
tions towards a better understanding of Solidity. The focus of our work was to provide
a framework for the verification of smart contracts written in Solidity and while it is
possible to verify them directly from the semantics it is often tedious and difficult.

Another line of research has focused on the development of automatic verification
techniques for Solidity programs. For example, Mavridou et al. [31] provide an ap-
proach based on FSolidM [32], in which a Solidity smart contract is modeled as a state
machine to support model checking of common security properties. In addition, Hajdu
and Jovanovic [20] provide solc-verify, a modular verifier for Solidity smart contracts.
Work in this area usually focuses on the automatic verification of different aspects of
Solidity programs and can not be used to verify general functional correctness, which
is the focus of our work.

Finally, some research has focused on the verification of functional correctness of
Solidity programs. Early work in this area includes TinySol [7] and Featherweight So-
lidity [15], two calculi formalizing some of the core features of Solidity. More recently,

SSCalc A Calculus for Solidity Smart Contracts 17

Ahrendt and Bubel described SolidiKeY [1], a formalization of a subset of Solidity in
the KeY tool to verify data integrity for smart contracts. Similar to our work, research in
this area can be used to verify the functional correctness of Solidity contracts. However,
the above works differ from the work presented in this paper in two main aspects. First,
the rules described above are provided in the form of axioms rather than being derived
from a formal semantic, as is the case with our work. Second, the above works focus
on a restricted subset of Solidity. For example, none of the works consider fixed-size
integers, different types of stores with different semantics for assignments, or external
vs. internal method calls, which are key features of Solidity addressed by our calculus.

8 Conclusion

In this paper, we presented a framework for the verification of Solidity smart contracts
in Isabelle/HOL. To this end, we developed a calculus to reason about Solidity state-
ments, formalized it in Isabelle, and mechanically verified its soundness. In addition,
we developed a verification condition generator that automates the use of the calculus.
To evaluate the approach, we used it to verify a basic token in Solidity, which showed
that the calculus can significantly reduce the effort to verify Solidity smart contracts
compared to a verification from its semantics.

While our calculus supports most of the important features of Solidity there are still
some more advanced features of the language that are not yet supported. In particular,
the calculus does not yet support inheritance, which seems to be an important feature
for Solidity developers. Moreover, although our case study demonstrates the feasibility
of our approach it is not clear how well it can be generalized to the verification of other
contracts.

To address the above limitations, future work arises in two directions. First, future
work should extend the calculus to support more advanced features of Solidity, such as
inheritance. In addition, future work should also focus on conducting additional case
studies in which the calculus is used for the verification of additional contracts.

Availability. Our formalisation and the evaluation results are available under BSD li-
cense (SPDX-License-Identifier: BSD-2-Clause) [29].

Acknowledgements. We would like to thank Achim Brucker for his support with Is-
abelle. Moreover, we would like to thank Wolfgang Ahrendt and Richard Bubel for
inspiring discussions about the verification of Solidity contracts.

References

1. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data integrity.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification
and Validation: Applications. pp. 9–24. Springer International Publishing, Cham (2020)

2. Almakhour, M., Sliman, L., Samhat, A.E., Mellouk, A.: Verification of smart
contracts: A survey. Pervasive and Mobile Computing 67, 101227 (2020).
https://doi.org/10.1016/j.pmcj.2020.101227

https://doi.org/10.1016/j.pmcj.2020.101227

18 D. Marmsoler and B. Thornton

3. Apt, K.R., de Boer, F., Olderog, E.R.: Verification of Sequential and Concurrent Programs.
Springer Publishing Company, Incorporated, 3rd edn. (2009)

4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts sok. In: Proceedings of the 6th International Conference on Principles of Secu-
rity and Trust - Volume 10204. pp. 164–186. Springer-Verlag, Berlin, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54455-6_8

5. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: Using blockchain for medical data
access and permission management. In: 2016 2nd International Conference on Open and Big
Data (OBD). pp. 25–30 (2016). https://doi.org/10.1109/OBD.2016.11

6. Bahrynovska, T.: History of Ethereum Security Vulnerabilities, Hacks and Their Fixes.
https://applicature.com/blog/blockchain-technology/history-
of-ethereum-security-vulnerabilities-hacks-and-their-fixes,
accessed: 2023-04-18

7. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for Solidity contracts.
In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J. (eds.) Data Privacy
Management, Cryptocurrencies and Blockchain Technology. pp. 233–243. Springer (2019)

8. Batra, G., Olson, R., Pathak, S., Santhanam, N., Soundararajan, H.: Blockchain 2.0:
What’s in store for the two ends? https://www.mckinsey.com/industries/
industrials-and-electronics/our-insights/blockchain-2-0-
whats-in-store-for-the-two-ends-semiconductors-suppliers-
and-industrials-consumers, accessed: 2023-04-18

9. Berghofer, S., Wenzel, M.: Inductive datatypes in hol — lessons learned in formal-logic
engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs.
pp. 19–36. Springer (1999)

10. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi,
N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Béguelin, S.: Formal
verification of smart contracts: Short paper. In: Programming Languages and Analysis for
Security. p. 91–96. PLAS, ACM (2016). https://doi.org/10.1145/2993600.2993611

11. Cassez, F., Fuller, J., Quiles, H.M.A.: Deductive verification of smart contracts with dafny.
In: Groote, J.F., Huisman, M. (eds.) Formal Methods for Industrial Critical Systems. pp.
50–66. Springer International Publishing, Cham (2022)

12. Chavez-Dreyfuss, G.: Sweden tests blockchain technology for land registry. https://
www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV, ac-
cessed: 2023-04-18

13. Clegg, P., Jevans, D.: Cryptocurrency crime and anti-money laundering report. Tech. rep.,
CipherTrace (2021)

14. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement.
In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) Theorem Proving in Higher Order Logics.
pp. 167–182. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

15. Crafa, S., Di Pirro, M., Zucca, E.: Is Solidity solid enough? In: Bracciali, A., Clark, J.,
Pintore, F., Rønne, P.B., Sala, M. (eds.) Financial Cryptography and Data Security. pp. 138–
153. Springer (2020)

16. Crosara, M., Centurino, G., Arceri, V.: Towards an Operational Semantics for Solidity. In:
van Rooyen, J., Buro, S., Campion, M., Pasqua, M. (eds.) VALID. pp. 1–6. IARIA (Nov
2019)

17. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM 18(8), 453–457 (aug 1975). https://doi.org/10.1145/360933.360975

18. Ethereum: Solidity. https://docs.soliditylang.org/, accessed: 2023-05-04
19. Gartner: Forecast blockchain business value, worldwide. https://www.gartner.

com/en/documents/3627117 (2019), accessed: 2023-05-04

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1109/OBD.2016.11
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-two-ends-semiconductors-suppliers-and-industrials-consumers
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-two-ends-semiconductors-suppliers-and-industrials-consumers
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-two-ends-semiconductors-suppliers-and-industrials-consumers
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-two-ends-semiconductors-suppliers-and-industrials-consumers
https://doi.org/10.1145/2993600.2993611
https://www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV
https://www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV
https://doi.org/10.1145/360933.360975
https://docs.soliditylang.org/
https://www.gartner.com/en/documents/3627117
https://www.gartner.com/en/documents/3627117

SSCalc A Calculus for Solidity Smart Contracts 19

20. Hajdu, Á., Jovanovic, D.: solc-verify: A modular verifier for Solidity smart contracts. In:
Chakraborty, S., Navas, J.A. (eds.) VSTTE. LNCS, vol. 12031, pp. 161–179. Springer
(2019). https://doi.org/10.1007/978-3-030-41600-3_11

21. Hajdu, Á., Jovanovic, D.: Smt-friendly formalization of the Solidity memory model.
In: Müller, P. (ed.) ESOP. LNCS, vol. 12075, pp. 224–250. Springer (2020).
https://doi.org/10.1007/978-3-030-44914-8_9

22. Jiao, J., Kan, S., Lin, S.W., Sanan, D., Liu, Y., Sun, J.: Semantic understanding of smart
contracts: executable operational semantics of Solidity. In: SP. pp. 1695–1712. IEEE (2020)

23. Jiao, J., Lin, S.W., Sun, J.: A generalized formal semantic framework for smart contracts. In:
Wehrheim, H., Cabot, J. (eds.) FASE. pp. 75–96. Springer (2020)

24. Kelly, J.: Banks adopting blockchain ’dramatically faster’ than expected: IBM.
https://www.reuters.com/article/us-tech-blockchain-ibm-
idUSKCN11Y28D (2016), accessed: 2023-05-04

25. Llama, D.: Tvl breakdown by smart contract language. https://defillama.com/
languages (2022)

26. Marmsoler, D., Brucker, A.D.: A Denotational Semantics Of Solidity In Isabelle/HOL. In:
Software Engineering and Formal Methods: 19th International Conference, SEFM 2021,
Virtual Event, December 6–10, 2021, Proceedings. pp. 403–422. Springer-Verlag, Berlin,
Heidelberg (2021). https://doi.org/10.1007/978-3-030-92124-8_23

27. Marmsoler, D., Brucker, A.D.: Conformance Testing of Formal Semantics Using Grammar-
Based Fuzzing. In: Kovács, L., Meinke, K. (eds.) Tests and Proofs. pp. 106–125. Springer
International Publishing, Cham (2022)

28. Marmsoler, D., Brucker, A.D.: Isabelle/solidity: A deep embedding of solidity in is-
abelle/hol. Archive of Formal Proofs (July 2022), https://isa-afp.org/entries/
Solidity.html, Formal proof development

29. Marmsoler, D., Thornton, B.: SSCalc - A Calculus for Solidity Smart Contracts (Apr 2023).
https://doi.org/10.5281/zenodo.7846232

30. Matichuk, D., Wenzel, M., Murray, T.: An isabelle proof method language. In: Klein, G.,
Gamboa, R. (eds.) Interactive Theorem Proving. pp. 390–405. Springer International Pub-
lishing, Cham (2014)

31. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: Correct-by-design smart con-
tracts for Ethereum. In: FC (2019)

32. Mavridou, A., Laszka, A.: Tool demonstration: Fsolidm for designing secure Ethereum smart
contracts. In: Bauer, L., Küsters, R. (eds.) Principles of Security and Trust. pp. 270–277.
Springer (2018)

33. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
34. News, B.: Hackers steal $600m in major cryptocurrency heist. https://www.

securityweek.com/hackers-steal-over-600m-major-crypto-heist
(2021), accessed: 2023-05-04

35. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic (2002)

36. Perez, D., Livshits, B.: Smart contract vulnerabilities: Vulnerable does not imply exploited.
In: 30th USENIX Security Symposium (USENIX Security 21). pp. 1325–1341. USENIX
Association (Aug 2021)

37. The Coq development team: The Coq proof assistant reference manual. LogiCal Project
(2004), version 8.0

38. TNW: These are the top 10 programming languages in blockchain. https:
//thenextweb.com/news/javascript-programming-java-
cryptocurrency (2019), accessed: 2023-05-04

39. Vogelsteller, F., Buterin, V.: “erc-20: Token standard”, ethereum improvement proposals, no.
20. https://eips.ethereum.org/EIPS/eip-20 (11 2015)

https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-44914-8_9
https://www.reuters.com/article/us-tech-blockchain-ibm-idUSKCN11Y28D
https://www.reuters.com/article/us-tech-blockchain-ibm-idUSKCN11Y28D
https://defillama.com/languages
https://defillama.com/languages
https://doi.org/10.1007/978-3-030-92124-8_23
https://isa-afp.org/entries/Solidity.html
https://isa-afp.org/entries/Solidity.html
https://doi.org/10.5281/zenodo.7846232
https://www.securityweek.com/hackers-steal-over-600m-major-crypto-heist
https://www.securityweek.com/hackers-steal-over-600m-major-crypto-heist
https://thenextweb.com/news/javascript-programming-java-cryptocurrency
https://thenextweb.com/news/javascript-programming-java-cryptocurrency
https://thenextweb.com/news/javascript-programming-java-cryptocurrency
https://eips.ethereum.org/EIPS/eip-20

20 D. Marmsoler and B. Thornton

40. Wadler, P.: Monads for functional programming. In: Broy, M. (ed.) Program Design Calculi.
pp. 233–264. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

41. Yang, Z., Lei, H.: Lolisa: Formal syntax and semantics for a subset of the Solidity pro-
gramming language in mathematical tool Coq. Mathematical Problems in Engineering 2020,
6191537 (2020)

42. YCharts.com: Ethereum transactions per day. https://ycharts.com/indicators/
ethereum_transactions_per_day (2022), accessed: 2023-05-04

43. Yurcan, B.: How blockchain fits into the future of digital identity (2016)
44. Zakrzewski, J.: Towards verification of Ethereum smart contracts. In: Piskac, R.,

Rümmer, P. (eds.) VSTTE. LNCS, vol. 11294, pp. 229–247. Springer (2018).
https://doi.org/10.1007/978-3-030-03592-1_13

https://ycharts.com/indicators/ethereum_transactions_per_day
https://ycharts.com/indicators/ethereum_transactions_per_day
https://doi.org/10.1007/978-3-030-03592-1_13

	SSCalc - A Calculus for Solidity Smart Contracts

